Hjem > H > Hvordan Faktorisere Polynomfunksjon?

Hvordan faktorisere Polynomfunksjon?

Faktorisere vha.

Dersom x1 og x2 er nullpunktene i polynomet ax2 + bx + c, kan polynomet faktoriseres som a(x – x1)(x – x2). At x1 og x2 er nullpunktene i polynomet betyr at x1 og x2 er løsningene til likningen ax2 + bx + c = 0.

Les mer

I forhold til dette, hva skal vi med kvadratsetningene?

Kvadratsetningene kan være til stor hjelp for å faktorisere kompliserte uttrykk. Generelt er det ingen metoder som forteller hvordan man kan faktorisere et vilkårlig uttrykk. Man er altså avhengig av ulike «triks», alt etter hva slags uttrykk det er snakk om. Ta dette i betraktning, hva er det minste kvadrattallet? Kvadrattallene er altså tallene 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, 121

Hvordan bruke kvadratsetningene baklengs?

brukekvadratsetning baklengs

De kan skrives som følgende:

  1. (a+b)2=a2+2ab+b2 (1. kvadratsetning)
  2. (a−b)2=a2−2ab+b2 (2. kvadratsetning)
  3. (a+b)(a−b)=a2−b2 (konjugatsetningen)
Ta dette i betraktning, hvordan løse et likningssett? Å løse et likningssett går ut på å finne de verdiene for x og y som passer i begge likningene. En metode for å løse et likningssett ved regning, er innsettingsmetoden. Når vi bruker denne metoden, begynner vi med å finne et uttrykk for den ene ukjente, uttrykt med den andre ukjente ved hjelp av en av likningene.

Tilsvarende, når har andregradslikning to løsninger?

Andregradslikninger inneholder alltid et ledd hvor er en faktor.

  1. En andregradslikning er en likning på formen a x 2 + b x + c = 0 , der , og er konstanter og a ≠ 0 .
  2. Hvorfor har noen likninger to løsninger, noen en og andre ingen?
  3. Dersom grafen til andregradspolynomet krysser -aksen, har likningen to løsninger.
Flere elementer
Du kan også spørre hvor mange løsninger har likningen? Alle punktene som linjen består av tilfredsstiller kravene til likningene. Dermed har vi uendelig mange løsninger som alle må tilfredsstille x+y=2.

Du kan også spørre hvordan regne ut kvadratsetning?

En grunn til å kalle dette første kvadratsetning er at for positive tall a og b, tolkes (a+b)2 som arealet av et kvadrat med sidelengde a+b. Arealet til dette kvadratet kan vi finne på to måter. Først kan vi si at arealet av kvadratet er produktet av lengden og høyden, (a+b)(a+b)=(a+b)2. Man kan også spørre hva betyr det å faktorisere et tall? En faktorisering av et positivt heltall n, betyr å finne to positive heltall a og b, slik at a*b=n.

Hva er delelige tall?

Delelige tall er tallene 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100.

By Yuji

Hvordan ser et funksjonsuttrykk ut? :: Hvordan skrive uttrykk med fullstendig kvadrat?
Nyttige lenker